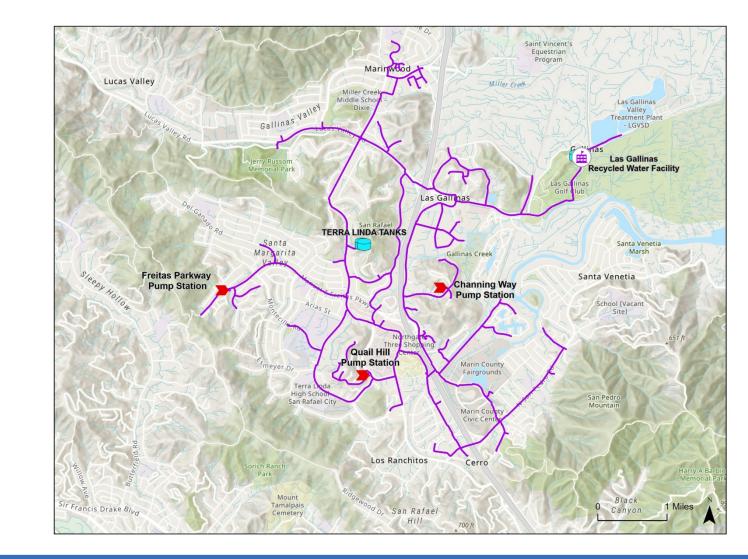


Update on Recycled Water and Potable Reuse

OPERATIONS COMMITTEE MEETING

November 17, 2023



Overview

- Recycled Water
- Potable Reuse: Indirect Potable Reuse (IPR) & Direct Potable Reuse (DPR)
- Next Steps

Current Recycled Water System

- 706 AF in WY 2023
- 358 customers
- 25 miles of distribution pipelines, 3 pump stations and 2 storage tanks
- MMWD pioneered nontraditional uses of recycled water such as toilet flushing in condominium, car wash, HVAC cooling towers and commercial laundries

Current Recycled Water System: Commercial Truck Hauling

- Designated locations throughout recycled distribution system for permitted commercial users to fill up and haul to construction/work sites
- Trained and permitted estimated 85 municipalities/contractors on the proper use of RW
- Up to 7 million gallons annually is hauled for:
 - Dust control and soil compaction
 - Sewer flushing
 - Street cleaning
 - Irrigation

Sanitary agency filling up with recycled water for sewer cleaning near Civic Center Drive

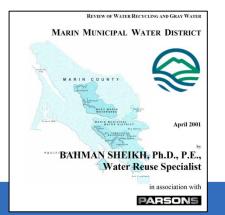
Current Recycled Water System: Residential Fill Station

- Drought response tool
- Constructed and operated residential recycled water fill station to support customers throughout the drought
- In partnership with County of Marin

	2021	2022
Amount of Recycled Water Picked up	1.3 AF	1.2 AF
Customer Visits	3,795	4,402

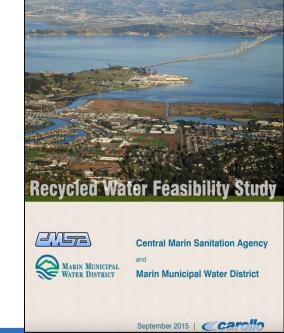
How to Increase Recycled Water Use?

- Add new customers within existing recycled water system
- Expand existing recycled water system
 - District has conducted number of master planning studies to assess feasibility
- Add a new recycled water system
 - Central Marin Sanitation Agency (CMSA), San Rafael
 - Sewage Agency of Southern Marin (SASM), Mill Valley

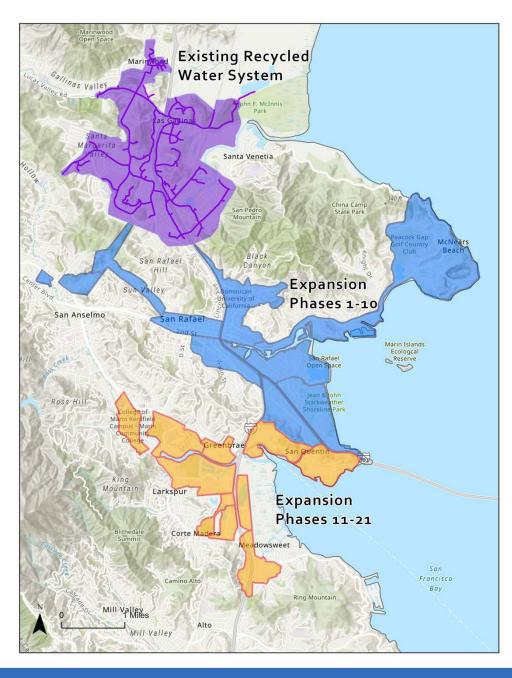

Increase Recycled Water Use: Add customers within existing service area

- Dual Plumb Projects
 - Terra Linda High School Gym –12 fixtures (2023)
 - The Oaks Senior Care Facility 96 fixtures (2022)
 - Kaiser Medical Office Building 82 fixtures (2022)
- Landscape Irrigation Projects
 - Venetia Valley School, expansion of existing irrigation (2022)
 - 400 Smith Ranch Road Sports Facility (2022)
 - 949 Del Presidio Gas Station (2022)

Increase Recycled Water: Expansion Studies


Planning efforts to identify opportunities for investment and expansion of recycled water system:

- 2000 Recycled Water Expansion Feasibility Study
- 2001 Bahman Sheikh Recycled Water Study
- 2007 Feasibility Study Update
- 2014 MMWD-SASM Recycled Water Feasibility Study
- 2016 MMWD-CMSA Recycled Water Feasibility Study
- 2017 Water Resources Plan 2040
- 2022 Peacock Gap Recycled Water Preliminary Design
- 2022 MMWD-CMSA Direct Potable Reuse Feasibility Study
- 2023 Strategic Water Supply Assessment

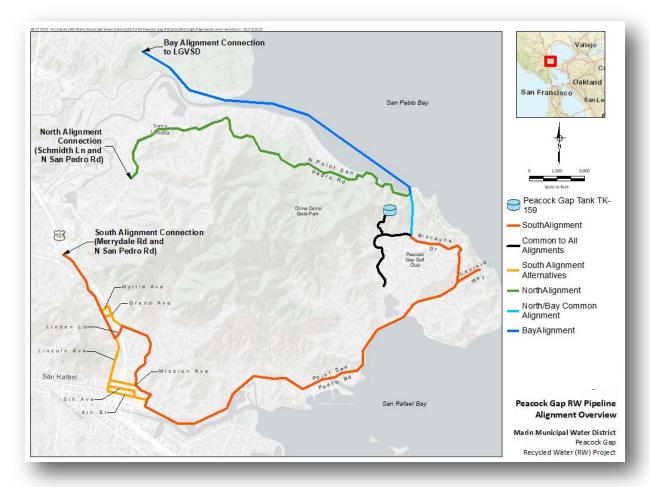


Increase Recycled Water Use: Phased Expansion of System

Evaluated phased approach to expanding recycled water system (2000 Recycled Water Feasibility Study) and updated demand offsets and costs since (SF Bay Area CCI 2023)

	Demand (acre-feet)	Pipe Length (miles)	Est. Capital Cost	Annual Cost/AF
Existing System	706	25		
Expansion Phases 1-10 (San Rafael, Peacock Gap, Canal Area)	345	24.0	\$60.6M	\$10,945
Expansion Phases 11-21 (San Quentin, Corte Madera, Larkspur/Greenbrae)	602	17.0	\$64.7M	\$7,126

Increase Recycled Water Use: Project-based Expansion of System


- Project-based expansions of recycled water system also evaluated for feasibility
- Expansion projects are typically adjacent to existing recycled water system
- Potable offset demands and costs are monitored and updated (SF Bay Area CCI 2023)

Project	Demand (acre-feet)	Est. Capital Cost	Annual Cost/AF
Lucas Valley Extension	21	\$3.3M	\$10,015
Mt. Tam Cemetery	18	\$3.0M	\$10,382
Circle Road	8.3	\$2.3M	\$16,449
Peacock Gap	285	\$26.7M	\$6,355

Increase Recycled Water Use: Project-based Expansion Peacock Gap Preliminary Design (2022)

- Evaluated 3 pipeline routes to serve
 Peacock Gap area with recycled water
- Assessed water demand offset, environmental considerations, constructability, etc.
- Identified preferred alternative and provided 30% design drawings

Alignment	Demand (ac-ft)	Pipe Length (miles)	Est. Capital Cost	Annual Cost/AF
South Route (Central San Rafael)	285	8.7	\$26.7M	\$6,355
North San Pedro Route	176	5.7	\$16.6M	\$6,390
Bay Route	173	4.9	\$19.9M	\$7,552

Increase Recycled Water Use: Add New Recycled Water System

Evaluated as part of 2015-16 Feasibility Studies with CMSA and SASM, and updated costs since (SF Bay Area CCI 2023)

Project	Demand (acre-feet)	Est. Capital Cost	Annual Cost/AF
San Quentin (CMSA)	150	\$11.4M	\$5,359
MMWD/SASM	81	\$4.3M	\$4,078

Summary: Recycled Water Expansion Opportunities

Project	Demand (acre-feet)	Est. Capital Cost	Annual Cost/AF
Expansion Phases 1-10* (San Rafael, Peacock Gap, Canal Area)	345	\$60.6M	\$10,945
Expansion Phases 11-21 (San Quentin, Corte Madera, Larkspur/Greenbrae)	602	\$64.7M	\$7,126
Peacock Gap* (South Alignment)	285	\$26.7M	\$6 <i>,</i> 355
San Quentin (CMSA)	150	\$11.4M	\$5,359
MMWD/SASM	81	\$4.3M	\$4,078
Lucas Valley Extension	21	\$3.3M	\$10,015
Mt. Tam Cemetery	18	\$3.0M	\$10,382
Circle Road	8.3	\$2.3M	\$16,449

*Peacock Gap is a sub-project of Phases 1-10 with majority of demand due to golf course


Challenges and Opportunities: Recycled Water

- Drought proof supply
- Expansion of recycled water in District service area is possible but high \$/AF
- Expanding recycled distribution system creates future long-term maintenance
- Continue to pursue grant funding opportunities to improve costbenefit of recycled "purple pipe" opportunities
- Explore potable reuse options

Potable Reuse Options

Overview: Indirect Potable Reuse (IPR)

- Planned use of recycled (purified) water to replenish drinking water supplies with a suitable environmental barrier
- Two types of IPR:
 - Groundwater recharge: use recycled water to replenish groundwater basin as source of municipal water supply
 - Surface water augmentation: placement of recycled water into a surface water reservoir that is used as a source of domestic drinking water supply

Groundwater augmentation IPR not feasible in Marin

Treatment Requirements: Indirect Potable Reuse (IPR)

- Pathogen Control reduction required through the treatment train:
 - 12-log reduction enteric virus
 - 10-log reduction Giardia
 - 10-log reduction Cryptosporidium
 - No individual process may receive more than 6-log reduction credit for any one pathogen class
- Additional requirements depending on selected treatment process include combinations of:
 - Retention time: 2 6+ months (underground or in surface water)
 - Dilution: 10:1 100:1
 - Reverse Osmosis (RO)
 - Advanced oxidation process
 - May include higher log reduction credits as well
- Develop source control program as well as online monitoring and pretreatment program

1 log = 90% reduction of pathogens 2 log = 99% reduction 3 log = 99.9% reduction 4 log = 99.99% reduction 5 log = 99.999% reduction ... and so on

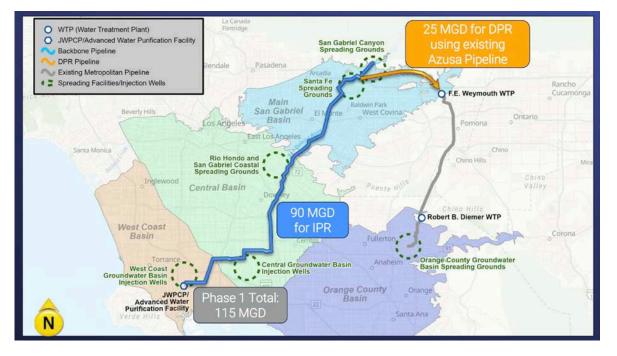
Conceptual Project in Marin: Indirect Potable Reuse (IPR)

Marin Regional IPR Project (Surface Water Augmentation)

- Collect secondary effluent from LGVSD & SASM, convey to CMSA
- Construct Advanced Water Purification Facility to meet Surface Water Augmentation IPR: Ultrafiltration, Reverse Osmosis, UV-AOP, conditioning
- Convey purified water to Kent Lake through 28 miles of dedicated pipelines and 4 new pump stations
- Expected annual yield 7,840 AFY (7 mgd)

Project	Demand (acre-feet)	Est. Capital Cost	Operations	Annual Cost/AF
Marin Regional IPR	7,840	\$452.0 M	Continuous	\$4,504
(Surf. Water Augmentation)	7,040	Ş 4 52.0 ₩	Intermittent	\$13,512*

* Cost(\$)/AF assumes continuous operations. Cost/AF likely to increase 3x if operated intermittently.



Planned or Operational Projects (California): Indirect Potable Reuse (IPR)

Project	Reuse Type	Capacity	Retention Time	Status	Cost
Orange County Groundwater Replenishment System	IPR – groundwater augmentation	Expansion from 100 to 130 MGD completed in 2023	> 2 months in groundwater basin	Operating since 1976	\$284 M (Expansion of +30 MGD completed in 2023)
San Diego Pure Water Project	Phase 1: IPR-surface water augmentation Phase 2: DPR raw water augmentation	Phase 1: 30 MGD Phase 2: Add'l 53 MGD	>2 months in reservoir with >10:1 dilution	Construction Phase 1: 2025 startup Phase 2: ~2035	Phase 1: ~\$1.5 billion Phase 2: Under development
Santa Clara Valley Water Advanced Water Purification Facility	Current: Non-potable use Future: IPR-groundwater augmentation	Current Facility: 8 MGD Future: +4-24 MGD	N/a	Current Facility operating; Future phases - planning	Future Phases: Est. \$1 Billion
Pure Water Southern California (Metropolitan Water)	Phase 1: IPR-groundwater augmentation Future: DPR (planning)	Phase 1: 100 MGD Future: 150 MGD (up to 168,000 AFY)	2-6 months in groundwater basin	Phase 1 Design & Construction 2024-2031 Startup Operations: 2032	\$3.4 Billion (cost est. from 2018 and undergoing revision)
Pure Water Monterey	IPR-groundwater augmentation	3,500 AFY Future: +2,250 AFY	6-9 months in groundwater basin	Operational since 2020	\$46M Future: +\$141M

Planned or Operational Projects (California): Pure Water Southern California

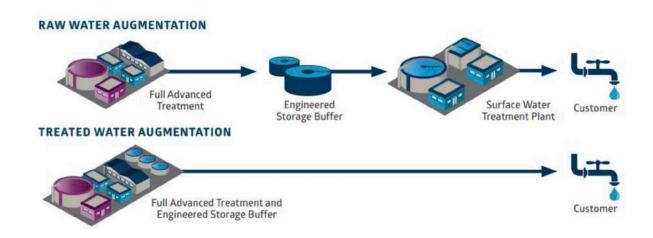
- Partnership between Metropolitan Water District of Southern California and LA County Sanitation Districts to build one of largest reuse programs in world
- Will increase drought resiliency in Southern California
- At full-scale will operate a 150-MGD advanced water treatment plant, 60+ miles of dedicated conveyance to groundwater basins
- Incorporate flexible design for future expansion through DPR (raw water augmentation)
- Current Project Schedule:
 - Operating a demonstration plant since 2019 & conducting preliminary design studies
 - Final Design: 2025-2027
 - Construction: 2027 2031
 - Start-up and testing: 2032

Pure Water Southern California -- Phase 1

Considerations: Indirect Potable Reuse

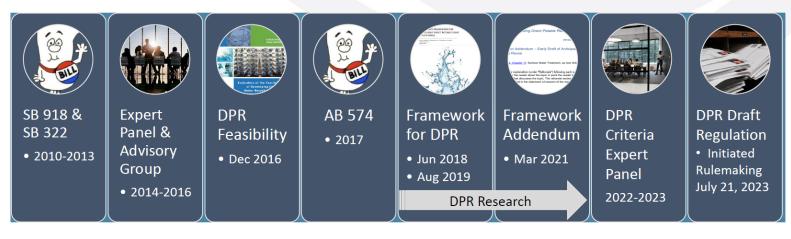
- Large capital investments and significant operating costs
- Permitting for blending purified recycled water into Kent Lake water
- For Marin, conveyance of to local reservoir significantly increases cost
- Constituents of concern
 - Trace contaminants pharmaceuticals, PFAS, personal care products, other trace organics
 - Concentrate management RO concentrate discharged to Bay
- Continuous operations treatment facilities are not designed to be operated intermittently
- Is DPR a better fit?

Overview: Direct Potable Reuse (DPR)


Planned introduction of purified recycled water either

Raw water augmentation: into a raw water supply immediately upstream of a water treatment plant

OR

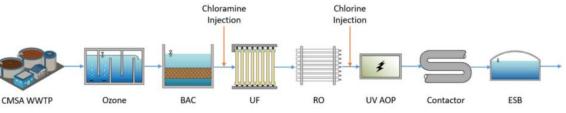

Treated water Augmentation:

directly into a public water system

California Regulatory Context: Direct Potable Reuse (DPR)

DPR Regulatory Development Timeline

AB 574: Adopt uniform water recycling criteria for direct potable reuse through raw water augmentation by December 31, 2023


California Water Boards

- CA SWRCB Released Draft Regulation for 45-day Public Comment on July 21, 2023
- Public Hearing: Sept 7, 2023
- Target Adoption: Dec 31, 2023
- Estimated effective date: 2nd Quarter 2024

Draft Treatment Requirements: Direct Potable Reuse (DPR)

- Pathogen Control and reduction required through the treatment train:
 - 20-log removal enteric virus
 - 14-log Giardia
 - 15-log Cryptosporidium
 - No individual process may receive more than 6-log reduction credit for any one pathogen class
- Required to include:
 - Ozone/biologically activated carbon (BAC) filtration
 - Reverse Osmosis (RO)
 - UV/AOP
- Develop source control program as well as online monitoring and pretreatment program
- 24 months of monthly feed water monitoring prior to operations for regulated contaminants

1 log = 90% reduction of pathogens 2 log = 99% reduction 3 log = 99.9% reduction 4 log = 99.99% reduction 5 log = 99.999% reduction ... and so on

From DPR TM (2022)

Conceptual Project in Marin: Raw Water Augmentation (DPR)

Marin Regional DPR Project (Raw Water Augmentation)

- Collect secondary effluent from LGVSD & SASM, convey to CMSA
- Construct Advanced Water Purification Facility to meet Raw Water Augmentation DPR: Ozone/BAC, Ultrafiltration, Reverse Osmosis, UV-AOP, chlorine contact, conditioning
- Convey purified water to Bon Tempe Lake through 22.6 miles of dedicated pipelines and 3 new pump stations
- Discharge RO reject to CMSA effluent outfall
- Expected annual yield 7,840 AFY (7 mgd)

Project	Demand (acre-feet)	Est. Capital Cost	Operations	Annual Cost/AF
Marin Regional DPR			Continuous	\$5,146
(Raw Water Augmentation)			Intermittent	\$15,438*

* Cost(\$)/AF assumes continuous operations. Cost/AF likely to increase 3x if operated intermittently.

Conceptual Project in Marin: Treated Water Augmentation (DPR)

MMWD-CMSA TWA (DPR) Project

- Advanced Water Purification Facility at CMSA, only treat CMSA effluent, connection to exiting distribution (treated water augmentation) up to 4 mgd
- Targeted to meet <u>DRAFT</u> DPR treatment requirements
- Treatment Trains include:
 - Ozone (O3)
 - Biological active carbon (BAC)
 - Ultrafiltration (UF)
 - Reverse Osmosis (RO)
 - Ultraviolet light advanced oxidation process (UV AOP) using free chlorine
 - Free chlorination
 - Additional UV disinfection
 - Stabilization and chloramination for distribution

Figure 5.1 Map of Proposed Infrastructure

Project	Demand (acre- feet)	Est. Capital Cost	Operations	Annual Cost/AF
MMWD-CMSA DPR	4 490	617 <i>4</i> 4 M	Continuous	\$3,562
(Treated Water Augmentation)	4,480	\$124.4 M	Intermittent	\$10,686*

* Cost(\$)/AF assumes continuous operations. Cost/AF likely to increase 3x if operated intermittently.

Planned or Operational Projects: Direct Potable Reuse (DPR)

Project	Reuse Type	Capacity	Status
Big Spring, Texas	DPR-raw water augmentation	1.7 MGD	In operation since 2013
El Paso, Texas	DPR-treated water augmentation	10 MGD	Construction anticipated 2024
Windhoek, Namibia	DPR-treated water augmentation	5.5 MGD	Operational since 1968
PureWaterSF (SFPUC)	DPR-treated water augmentation	4 MGD	Alternative water supply planning; construction horizon ~2040
San Diego Pure Water Project	Phase 1: IPR-surface water augmentation Phase 2: DPR raw water augmentation	Phase 1: 30 MGD Phase 2: Add'l 53 MGD	Construction Phase 1: 2025 startup Phase 2: ~2035
Pure Water Southern California (Metropolitan Water)	Phase 1: IPR-groundwater augmentation Future: DPR raw water augmentation	Phase 1: 100 MGD Future: 150 MGD (up to 168,000 AFY)	Phase 1 Design & Construction 2024-2031 Startup Operations: 2032

Considerations: Direct Potable Reuse

- Public acceptance No implementation of treated water augmentation in the US
- Regulations are still under review earliest effective date is mid-2024, subject to refinement over time
- Constituents of concern
 - Trace contaminants pharmaceuticals, PFAS, personal care products, other trace organics;
 - Concentrate management RO concentrate discharged to Bay
- Introduces different water sources for different parts of service area
- Not designed to be intermittently operated

Water Reuse Options Cost Estimate Summary

Project	Reuse Project Type	Demand (acre-feet)	Est. Capital Cost	Cost/AF
MMWD/SASM	Recycled (Non-potable)	81	\$4.3M	\$4,078
San Quentin (CMSA)	Recycled (Non-potable)	150	\$11.4M	\$5,359
Peacock Gap (South Alignment)	Recycled (Non-potable)	285	\$26.7M	\$6,355
Marin Regional IPR	IPR – Surface Water Augmentation (potable)	7,840	\$452.0 M	\$4,504*
Marin Regional DPR	DPR – Raw Water Augmentation (potable)	7,840	\$433.8 M	\$5,146*
MMWD-CMSA DPR	DPR – Treated Water Augmentation (potable)	4,480	\$124.4 M	\$3,562*

* Cost(\$)/AF assumes continuous operations. Cost/AF likely to increase 3x if operated intermittently.

Next Steps

- Expansion of (purple pipe) recycled water in District service area is possible but capital intensive
 - Pursue grant opportunities to help fund recycled water projects
- Monitor industry regulations, trends and technological advances such as DPR
- Consider multi-benefit opportunities with sewage agencies as SF Bay nutrient regulations move forward
 - Irrigation with recycled water ideal for nutrient removal (vs IPR and DPR which concentrate nutrients)
- Continue to evaluate and prioritize reuse opportunities as a component of overall Water Supply Roadmap implementation